

TeraHertz

RESEARCH OBJECTIVES:

Organizing the Research and Network-wide Training Programme

Review of the State-of-the-Art in the Research Field and Selection of Dielectric/ Semiconductor Crystalline and Nanocomposite Materials for Investigation

Development and Approbation of Techniques for Materials Characterization in THz Spectral Range

Three-dimensinal Analysis of the **Spatial Anisotropy** and Choosing the **Most Effective** Geometries of the Investigated Materials

Studying the Influence of the Intensities of the **Exciting Optical** Beam and the **Applied External** Electric Field on the Properties of the Investigated Semiconductor Materials

Fabrication and Testing of Laboratory Prototypes of Highly Efficient Quasi-optoelectronic Cells from Bulk Dielectric/ Semiconductor **Crystalline Materials** Manufacturing and Testing the Laboratory Prototypes of Quasi-optoelectronic Cells Based on the Photogeneration of Carriers in Semiconductor Materials and its **Coplanar Structures**

Translation of the Quasi-optical Technologies and Engineered Materials into Innovative Products

INFORMATION ON THE PROJECT

Project name: Novel Technologies and Materials for

TeraHertz Radiation Control Project number: 101086493 **Project acronym:** TeraHertz

Topic: HORIZON-MSCA-2021-SE-01-01

Type of action: HORIZON TMA MSCA Staff Exchanges

LEARN MORE AT:

Project website

https://terahertz-project.eu

the European Union

Funded by the European Union under the Horizon Europe TeraHertz project (Grant Agreement 101086493). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.