

## Work Packages (WPs)



WP1 Project Coordination

WP2 Analysis and Selection of Crystalline and Nanoporous Materials

WP3 Investigation of the Selected Materials in the THz Range

WP4 3D Spatial Anisotropy Analysis and Computer Simulations

WP5 Manufacturing and Investigation of Crystalline Nanocomposites and Semiconductor Coplanar Structures

WP6 Fabrication and Characterization of Laboratory Prototypes for THz Radiation Control

WP7 Implementation of Laboratory
Prototypes into Innovative Products

P8 Activities Dissemination and Communication

The project focuses on developing novel technologies and materials characterization that are to be used synergistically to create advanced possibilities for terahertz radiation control.

The project brings together an international multidisciplinary network of organizations from academia and industry that will work coherently on the innovative research program on quasi-optical technologies and related material engineering.

#### INFORMATION ON THE PROJECT

Project name: Novel Technologies and Materials for

TeraHertz Radiation Control **Project number:** 101086493 **Project acronym:** TeraHertz

Topic: HORIZON-MSCA-2021-SE-01-01

Type of action: HORIZON TMA MSCA Staff Exchanges

### **LEARN MORE AT:**

**Project website** 

https://terahertz-project.eu





### **RESEARCH OBJECTIVES:**

Organizing the Research and Network-wide Training Programme Review of the
State-of-the-Art in
the Research Field and
Selection of Dielectric/
Semiconductor Crystalline
and Nanocomposite
Materials for Investigation

Development and Approbation of Techniques for Materials Characterization in THz Spectral Range Three-dimensinal Analysis of the Spatial Anisotropy and Choosing the Most Effective Geometries of the Investigated Materials

Studying the Influence of the Intensities of the Exciting Optical Beam and the Applied External Electric Field on the Properties of the Investigated Semiconductor Materials Fabrication and Testing of Laboratory Prototypes of Highly Efficient Quasi-optoelectronic Cells from Bulk Dielectric/ Semiconductor Crystalline Materials Manufacturing and Testing the Laboratory Prototypes of Quasi-optoelectronic Cells Based on the Photogeneration of Carriers in Semiconductor Materials and its Coplanar Structures

Translation of the Quasi-optical Technologies and Engineered Materials into Innovative Products

## **LIST OF PARTICIPANTS:**

| PARTICIPANT<br>NO | ORGANIZATION NAME                                                                                         |       | SHORT NAME     |
|-------------------|-----------------------------------------------------------------------------------------------------------|-------|----------------|
| 1                 | Lviv Polytechnic National University                                                                      | LPNU  | Ukraine        |
| 2                 | Warsaw University of Technology                                                                           | WUT   | Poland         |
| 3                 | Scientific research company<br>Electron-Carat - branch of private joint<br>stock company Concern-Electron | CARAT | Ukraine        |
| 4                 | University of Angers                                                                                      | UA    | France         |
| 5                 | Czestochowa University of Technology                                                                      | PCz   | Poland         |
| 6                 | Private Enterprise Softpartners                                                                           | SPC   | <b>Ukraine</b> |
| 7                 | Energia Oze Spolka z Ograniczona<br>Odpowiedzialnoscia                                                    | ENOZE | Poland         |





#### INFORMATION ON THE PROJECT

**Project name:** Novel Technologies and Materials for

TeraHertz Radiation Control **Project number:** 101086493 **Project acronym:** TeraHertz

Topic: HORIZON-MSCA-2021-SE-01-01

Type of action: HORIZON TMA MSCA Staff Exchanges

#### LEARN MORE AT:

Project website

https://terahertz-project.eu



# Work Packages (WPs)

WP1 Project Coordination

WP2 Analysis and Selection of Crystalline and Nanoporous Materials

WP3 Investigation of the Selected Materials in the THz Range

WP4 3D Spatial Anisotropy Analysis and Computer Simulations

WP5 Manufacturing and Investigation of Crystalline Nanocomposites and Semiconductor Coplanar Structures

WP6 Fabrication and Characterization of Laboratory Prototypes for THz Radiation Control

WP7 Implementation of Laboratory
Prototypes into Innovative Products

WP8 Dissemination and Communication Activities

The project focuses on developing novel technologies and materials characterization that are to be used synergistically to create advanced possibilities for terahertz radiation control.

The project brings together an international multidisciplinary network of organizations from academia and industry that will work coherently on the innovative research program on quasi-optical technologies and related material engineering.





Funded by the European Union under the Horizon Europe TeraHertz project (Grant Agreement 101086493). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them.

## **RESEARCH OBJECTIVES:**

Organizing the Research and Network-wide Training Programme Review of the State-of-the-Art in the Research Field and Selection of Dielectric/ Semiconductor Crystalline and Nanocomposite Materials for Investigation Development and Approbation of Techniques for Materials Characterization in THz Spectral Range Three-dimensinal Analysis of the Spatial Anisotropy and Choosing the Most Effective Geometries of the Investigated Materials

Studying the Influence of the Intensities of the Exciting Optical Beam and the Applied External Electric Field on the Properties of the Investigated Semiconductor Materials Fabrication and Testing of Laboratory Prototypes of Highly Efficient Quasi-optoelectronic Cells from Bulk Dielectric/ Semiconductor Crystalline Materials Manufacturing and Testing the Laboratory Prototypes of Quasi-optoelectronic Cells Based on the Photogeneration of Carriers in Semiconductor Materials and its Coplanar Structures

Translation of the Quasi-optical Technologies and Engineered Materials into Innovative Products

## **LIST OF PARTICIPANTS:**

| PARTICIPANT<br>NO | ORGANIZATION NAME                                                                                         | · ·   | SHORT NAME |
|-------------------|-----------------------------------------------------------------------------------------------------------|-------|------------|
| 1                 | Lviv Polytechnic National University                                                                      | LPNU  | Ukraine    |
| 2                 | Warsaw University of Technology                                                                           | WUT   | Poland     |
| 3                 | Scientific research company<br>Electron-Carat - branch of private joint<br>stock company Concern-Electron | CARAT | Ukraine    |
| 4                 | University of Angers                                                                                      | UA    | France     |
| 5                 | Czestochowa University of Technology                                                                      | PCz   | Poland     |
| 6                 | Private Enterprise Softpartners                                                                           | SPC   | Ukraine    |
| 7                 | Energia Oze Spolka z Ograniczona<br>Odpowiedzialnoscia                                                    | ENOZE | Poland     |